Nonlocal evolution of weighted scale-free networks
نویسندگان
چکیده
منابع مشابه
Nonlocal evolution of weighted scale-free networks.
We introduce the notion of globally updating evolution for a class of weighted networks, in which the weight of a link is characterized by the amount of data packet transport flowing through it. By noting that the packet transport over the network is determined nonlocally, this approach can explain the generic nonlinear scaling between the strength and the degree of a node. We demonstrate by a ...
متن کاملEvolution of weighted scale-free networks in empirical data.
Weighted scale-free networks exhibit two types of degree-strength relationship: linear and nonlinear relationships between them. To understand the mechanism underlying such empirical relationships, theoretical evolution models for weighted scale-free networks have been introduced for each case. However, those models have not yet been tested with empirical data. In this study, we collect tempora...
متن کاملSpectra of weighted scale-free networks
Much information about the structure and dynamics of a network is encoded in the eigenvalues of its transition matrix. In this paper, we present a first study on the transition matrix of a family of weight driven networks, whose degree, strength, and edge weight obey power-law distributions, as observed in diverse real networks. We analytically obtain all the eigenvalues, as well as their multi...
متن کاملDynamic pattern evolution on scale-free networks.
A general class of dynamic models on scale-free networks is studied by analytical methods and computer simulations. Each network consists of N vertices and is characterized by its degree distribution, P(k), which represents the probability that a randomly chosen vertex is connected to k nearest neighbors. Each vertex can attain two internal states described by binary variables or Ising-like spi...
متن کاملMinimum spanning trees of weighted scale-free networks
– A complete characterization of real networks requires us to understand the consequences of the uneven interaction strengths between a system’s components. Here we use minimum spanning trees (MSTs) to explore the effect of correlations between link weights and network topology on scale-free networks. Solely by changing the nature of the correlations between weights and network topology, the st...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review E
سال: 2005
ISSN: 1539-3755,1550-2376
DOI: 10.1103/physreve.72.017103